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Predator-prey model

Consider a biological system in which two species interact, one a
predator and one its prey. They evolve in time according to the
pair of the equations:

dx

dt
= x(α− βy),

dy

dt
= −y(γ − δx) (1)

where,
y is the number of some predator;
x is the number of its prey;
dx
dt = ẋ and dy

dt = ẏ represent the growth of the two populations
against time t.

System (1) is called Lotka-Volterra system
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The prey equation:
dx

dt
= αx − βxy .

The prey are assumed to have an unlimited food supply, and to reproduce
exponentially unless subject to predation; this exponential growth is
represented by the term αx . The rate of predation upon the prey is
assumed to be proportional to the rate at which the predators and the
prey meet; this is represented by βxy .
The predator equation:

dy

dt
= δxy − γy .

δxy - the growth of the predator population. γy represents the loss rate
of the predators due to either natural death or emigration; it leads to an
exponential decay in the absence of prey.

The equation expresses the change in the predator population as growth

fuelled by the food supply, minus natural death.
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May-Leonard system

Mathematical model introduced by May and Leonard in 1975 to
describe a competition of three species:

ẋ =x(1− x − αy − βz),

ẏ =y(1− βx − y − αz),

ż =z(1− αx − βy − z).

(2)

x , y , z ≥ 0, 0 < α < 1 < β, and α + β > 2.
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Some studies about its dynamics:

May and Leonard (1975), dynamic aspects;

Schuster, Sigmund and Wolf (1979), dynamic aspects;

Leach and Miritzis (2006), first integrals;

Blé, Castellanos, Llibre and Quilantán (2013), integrability.
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A generalization of (2):

ẋ =x(1− x − α1y − β1z) = X (x , y , z),

ẏ =y(1− β2x − y − α2z) = Y (x , y , z),

ż =z(1− α3x − β3y − z) = Z (x , y , z),

(3)

x , y , z ≥ 0 and αi , βi , (1 ≤ i ≤ 3) real parameters.

It is called the May-Leonard asymmetric model.

Valery Romanovski Invariant surfaces and first integrals of the May-Leonard asymmetric system



Introduction
Invariant surfaces of the May-Leonard asymmetric system

First integrals of the May-Leonard asymmetric system
Conclusions

Classical Lotka-Volterra equations
May-Leonard system
First integrals
Darboux first integrals
Elimination theory

A generalization of (2):
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Some studies about its dynamics:

Chi, Hsu and Wu (1998), dynamic aspects;

van der Hoff, Greeff and Fay (2009), dynamic aspects;

Antonov, Dolićanin, R. and Tóth (2016), dynamic aspects,
first integrals.
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Antonov, Dolićanin, V. R. and Tóth (2016):

found first integrals of Darboux type constructed using
invariant planes (Darboux polynomials of degree one);

showed that the system can have a family of periodic solutions
satisfying Lyapunov’s theorem on holomorphic integral.
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Existence of periodic solutions for May-Leonard asymmetric system was
shown in [Chi, Hsu and Wu 1998], however it was mentioned there that
the periodic solutions appear due to Hopf bifurcations.

We show that there is a family of periodic solutions as follows.
When
β3 = 2−α1−α2+α1α2−α3+α1α3+α2α3−α1α2α3−β1−β2+β1β2

(β1−1)(β2−1) , the system has the

invariant plane

H4 = −x+α3x+β2x−α3β2x+y−α1y−α3y+α1α3y+z−β1z−β2z+β1β2z
(4)

First integral:

Ψ = xα1yα2zα3Hα4
4 (5)

α2 = −α1(−1 + β1)

α2 − 1
, α3 =

α1(−1 + β1)(−1 + β2)

(−1 + α2)(−1 + α3)
,

α4 = −α1(1− α2 + α2α3 − α3β1 − β2 + β1β2)

(−1 + α2)(−1 + α3)
.
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To guarantee that the all coordinates of the singular point are
positive we take the parameters
β1 = 1/4, β2 = 11/10, α1 = 5/4, α2 = 4/5, α3 = 3/2, β3 = 2/3.
In this case system (3)

ẋ = x(−x−5y

4
−z

4
+1), ẏ = y(−11x

10
−y−4z

5
+1), ż = z(

3x

2
+

2y

3
+z−1).

(6)
and the singular point P has the coordinates

x0 = 1/3, y0 = 1/2, z0 = 1/6.

Proposition

System (6) has a family of periodic solutions in a neighborhood of
the singular point P(1/3, 1/2, 1/6).
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Proof:

Moving the origin to the singular point by the substitution

u = x − x0, v = y − y0, w = z − z0

and then performing the linear change of coordinates

u =2X + 370Y /249,

v =3X − Y − 15
√

10Z/83,

w =X + 1/249(−235Y + 77
√

10Z )

we obtain from (6)
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Ẋ =− X − 6X 2 +
10450Y 2

268671
+

38048
√

10YZ

806013
− 10450Z 2

268671
,

Ẏ =
Z

3
√

10
− 6XY +

√
2

5
XZ − 2090Y 2

39923
+

16979
√

2
5YZ

39923
+

2090Z 2

39923
,

Ż =− Y

3
√

10
−
√

2

5
XY − 6XZ +

19187
√

10Y 2

119769
+

7730YZ

119769
− 19187

√
10Z 2

119769
.

By the Center Manifold Theorem ∃ an analytic center manifold
X = h(X ,Y ) passing through X = Y = Z = 0.

Expanding the first integral (5) into power series

Ψ(X ,Y ,Z ) = Y 2 + Z 2 + h.o.t.

⇒ in a neighborhood of the origin there exists a family of periodic
orbits formed by the intersection of the graphs of X = h(Y ,Z ) and
Ψ = c (0 < c < c0).
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First integrals

Consider system of differential equations

ẋ =P(x , y , z),

ẏ =Q(x , y , z),

ż =R(x , y , z),

(7)

P,Q and R polynomials of degree at most m.

Let X be the corresponding vector field,

X = P
∂

∂x
+ Q

∂

∂y
+ R

∂

∂z
.
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A C 1 function H : U → R non-constant in any subset of U is a
first integral of the differential system (7) if

XH = P
∂H

∂x
+ Q

∂H

∂y
+ R

∂H

∂z
≡ 0 in U.

If there are two first integrals of system (7),

H1 : U1 → R and H2 : U2 → R

we say that: H1 and H2 are independent in U1 ∩ U2 if their
gradients are independent in U1 ∩ U2 (except perhaps in a zero
Lebesgue measure set).

System (7) is completely integrable in U ⊂ R3 if it has two
independent first integrals in U.
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Darboux first integrals

A Darboux polynomial of system (7)

ẋ =P(x , y , z), ẏ = Q(x , y , z), ż =R(x , y , z),

is a polynomial f (x , y , z) such that

Xf =
∂f

∂x
P +

∂f

∂y
Q +

∂f

∂z
R = Kf , (8)

where K (x , y , z) is a polynomial of degree at most m − 1,

called cofactor of f .

If f is a Darboux polynomial of (7) then the equation f = 0
defines an algebraic surface which is invariant under the flow
of system (7).
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is a polynomial f (x , y , z) such that

Xf =
∂f

∂x
P +

∂f

∂y
Q +

∂f

∂z
R = Kf , (8)

where K (x , y , z) is a polynomial of degree at most m − 1,
called cofactor of f .

If f is a Darboux polynomial of (7) then the equation f = 0
defines an algebraic surface which is invariant under the flow
of system (7).

Valery Romanovski Invariant surfaces and first integrals of the May-Leonard asymmetric system



Introduction
Invariant surfaces of the May-Leonard asymmetric system

First integrals of the May-Leonard asymmetric system
Conclusions

Classical Lotka-Volterra equations
May-Leonard system
First integrals
Darboux first integrals
Elimination theory

If system (7) has irreducible invariant surfaces f1, f2, ..., fk with the
cofactors K1,K2, ...,Kk satisfying

k∑
i=1

λiKi = 0,

then

H = f λ11 · · · f
λk
k ,

is a first integral of (7), called a Darboux first integral.
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Elimination theory

Let I be an ideal in a polynomial ring k[x1, . . . , xn], where k is a
field.

And ` be a fixed number from the set {0, 1, . . . , n − 1}.

The `-th elimination ideal of I is the ideal

I` = I ∩ k[x`+1, . . . , xn].
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Elimination Theorem

Fix the lexicographic term order on the ring k[x1, . . . , xn] with
x1 > x2 > · · · > xn.

Let G be a Gröbner basis for the ideal I with
respect to this order. Then for any 0 6 ` 6 n − 1, the set

G` := G ∩ k[x`+1, . . . , xn]

is a Gröbner basis for the `th elimination ideal I`.
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Elimination – projection of the variety on the subspace x`+1, . . . , xn.
The variety of V(I`) is the Zariski closure of the projection of V(I ).
It is not always possible to extend a partial solution to a solution of the
original system.
Example. xy = 1, xz = 1. The reduced Groebner basis of
I = 〈xy − 1, xz − 1〉 with respect to lex with x > y > z is {xz − 1, y − z}.
I1 = 〈y − z〉. V(I1) is the line y = z in the (y , z)-plane. Partial solutions
corresponding to I1 are {(a, a) : a ∈ C}. Any partial solution (a, a) for
which a 6= 0 can be extended to the solution (1/a, a, a), except of (0, 0).

Valery Romanovski Invariant surfaces and first integrals of the May-Leonard asymmetric system



Introduction
Invariant surfaces of the May-Leonard asymmetric system

First integrals of the May-Leonard asymmetric system
Conclusions

Invariant surfaces of the May-Leonard asymmetric system

Objective

Find conditions on the parameters of the May-Leonard asymmetric
system (3)

ẋ =x(1− x − α1y − β1z) = X (x , y , z),

ẏ =y(1− β2x − y − α2z) = Y (x , y , z),

ż =z(1− α3x − β3y − z) = Z (x , y , z),

such that the system possess irreducible invariant surface of
degree two (Darboux polynomial of degree two).

We look separately for invariant surfaces passing and not passing
through the origin
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Theorem

System (3) has an irreducible invariant surface of degree 2 not
passing through the origin if one of the following 17 conditions or
conjugated to it holds:

(1) α2 = β1 = β2 − 1/2 = α1 − 3 = 0,

(2) α2 = β1 = β2 − 3 = α1 − 3 = 0 ,

(3) β3 = β1 = α3 + β2 − 1 = α2 + 1 = α1 − α3 − 1 = 0,
...

(15) β3 − 1/2 = β2 − 3 = α2 − 3 = α3 + β1 − 2 = α1 − 1/2 = 0,

(16) β3 − 3 = α3 − 3 = α2 − 3 = β1 − 3 = α1 + β2 − 2 = 0,

(17) β3−3 = α3+β2−4 = α2−3 = α3+β1−2 = α1−α3+2 = 0.
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Proof of the theorem

A general form of a possible invariant surface of degree two of
system (3) is

f (x , y , z) = h000 + h100x + h010y + h001z + h200x2 + h110xy

+ h101xz + h020y2 + h011yz + h002z2,
(9)

and its cofactor should be

K (x , y , z) = c0 + c1x + c2y + c3z . (10)
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Polynomial (9) will be an invariant surface of system (3) with
cofactor (10) if

Xf =
∂f

∂x
X +

∂f

∂y
Y +

∂f

∂z
Z = Kf . (11)

Comparing the coefficients of similar terms in (11), we obtain the
polynomial conditions for existence of an invariant surface (9),

g1 = g2 = ... = g19 = g20 = 0,

where
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g1 = −c0h000,

g2 = −c3h000 + h001 − c0h001,

...

g17 = −h100 − c1h100 + 2h200 − c0h200,

g18 = −2h200 − c1h200,

g19 = −h110 − β2h110 − c1h110 − 2α1h200 − c2h200,

g20 = −h101 − α3h101 − c1h101 − 2β1h200 − c3h200.

(12)

Let I = 〈g1, g2, ..., g19, g20〉 be the ideal generated by gi .

We have to find αi , βi such that the system
g1 = g2 = · · · = g19 = g20 = 0 has a solution.

To find such αi , βi it is sufficient to eliminate ci , hjkm from the ideal
I .
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To simplify the computations we consider separately the cases:

h000 = 1, meaning invariant curves f = 0 not passing through
the origin;

h000 = 0, meaning invariant curves f = 0 passing through the
origin.

From now on assume h000 = 1.
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To find invariant surfaces of degree two, at least one coefficient

h200, h110, h101, h020, h011, h002

MUST BE different from zero.

It can be written in the six polynomial form as

1− wh200 = 0;

1− wh110 = 0;

1− wh101 = 0;

1− wh020 = 0;

1− wh011 = 0;

1− wh002 = 0.

with w being a new variable.
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How to find systems admitting invariant surfaces with
h200 6= 0?

• Compute (e.g. using the routine eliminate of Singular) the
13-th elimination ideal of the ideal

I (1) = 〈I , 1− wh200〉,

in the ring

Q[w , c0, c1, c2, c3, h001, h002, h010, h011, h020,

h100, h101, h110, α1, β1, α2, β2, α3, β3].

• Denote this elimination ideal by I
(1)
13 ; and its variety by

V1 = V(I
(1)
13 ).
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How to find all the possibles invariant surfaces?

• Proceeding analogously, we can find other five eliminations ideals

I
(2)
13 , . . . , I

(6)
13 .

Denote the corresponding varieties V2 = V(I
(2)
13 ), . . . ,V6 = V(I

(6)
13 ).

• The union, V = V1 ∪ ... ∪ V6, contains the set of all
May-Leonard asymmetric systems, (3), having invariant surfaces of
degree two not passing through the origin.

• Since V = V(I
(1)
13 ) ∪ · · · ∪ V(I

(6)
13 ) = V(I

(1)
13 ∩ · · · ∩ I

(6)
13 ), the

irreducible decomposition of V is obtained:

computing the ideal J = I
(1)
13 ∩ · · · ∩ I

(6)
13 (routine intersect

of Singular);
finding the irreducible decomposition of V(J) (routine
minAssGTZ of Singular).
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The output gives us 88 ideals composing the irreducible
decomposition of the variety V(J).

So there are 88 conditions on the parameters αi , βi of the
May-Leonard asymmetric system for existence of an invariant
surface of degree two not passing through the origin.
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The May-Leonard asymmetric system has a symmetry with respect
to change of axes

x → z , y → x , z → y , (13)

x → y , y → z , z → x , (14)

x → y , y → x , z → z , (15)

x → z , y → y , z → z , (16)

x → x , y → z , z → y , (17)

that do not change the shape of the system.
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For instance, under transformation (13), x → z , y → x , z → y ,
system (3) becomes

ẋ =x(1− x − α2y − β2z),

ẏ =y(1− β3x − y − α3z),

ż =z(1− α1x − β1y − z),

that can be obtained from system (3) by the change of parameters

α1 → α3, β1 → β3, α2 → α1, β2 → β1, α3 → α2, β3 → β2.
(18)
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Thus, if we have a condition on the parameters of (3) under which
the system has an algebraic invariant surface, another condition
will be obtained by the transformation of the parameters according
to rule (18).

For example, under condition (5) of Theorem 1,
β3 = β1 = α3 + 1 = β2 − 3 = α2 + 1 = α1 − 1/2 = 0,
system (3) has the invariant surface f = 2− 4x + 2x2 − 2y + yz .
Applying the transformation of parameters (18),
α1 → α3, β1 → β3, α2 → α1, β2 → β1, α3 → α2, β3 → β2,
condition (5) becomes
β2 = β3 = α2 + 1 = β1 − 3 = α1 + 1 = α3 − 1/2 = 0.
This condition is one of the 88 obtained and gives us the invariant
surface f = 2− 4z + 2z2 − 2x + xy for system (3) under
transformation (13).
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Similarly, after transformations (13)–(17) the conditions for
existence of invariant surfaces are changed according to the rules

α1 → α2, β1 → β2, α2 → α3, β2 → β3, α3 → α1, β3 → β1, (19)

α1 → β2, β1 → α2, α2 → β1, β2 → α1, α3 → β3, β3 → α3, (20)

α1 → β3, β1 → α3, α2 → β2, β2 → α2, α3 → β1, β3 → α1, (21)

α1 → β1, β1 → α1, α2 → β3, β2 → α3, α3 → β2, β3 → α2.(22)

We say, that two conditions for existence of invariant surfaces are
conjugate if one can be obtained from another by means one of
transformations (18)–(22).

We investigate the existence of invariant surfaces only for
conditions which are not conjugated, reducing considerably the
number of cases.
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Moreover, some of that conditions provides invariant surfaces of
degree two which are not irreducible, namely:

α1 = β1 = 0, providing the invariant surface (1− x)2 (and its
respective conjugated conditions);

α2 = β1 = β2 + α1 − 2 = 0 providing the invariant surface
(1− x − z)2 (and its respective conjugated conditions);

β1 + α3 − 2 = β2 + α1 − 2 = β3 + α2 − 2 = 0 providing the
invariant surface (1− x − y − z)2 (and its respective
conjugated conditions).

The remaining conditions are the 17 on the statement Theorem.
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The corresponding surfaces are:

(1) f = 1− x − 2y + y2; (2) f = 1− 2x + x2 − 2y − 2xy + y2;
(3) f = 2− 2x − 2y + yz ; (4) f = 2− 4x + 2x2 − 2y + yz ;
(5) f = 2− 4x + 2x2 + 2xy − 2z + xz ;
(6) f = 2− 4x + 2x2 − 4y + 4xy + 2y2 − 2z + xz ;
(7) f = 1− x − 2y + y2 + yz ; (8) f = 2− 4x + 2x2 − 2y − 2z + xz ;
(9) f = 1− 2x + x2 − 2y − 2xy + y2 + yz ;
(10) f = 1− 2x + x2 − y − z + xz ;
(11) f = 1− x − y − z + xz ; (12) f = 1− 2x + x2− 2y + 2xy + y2 + yz ;
(13) f = 1− x − y − 2z + z2; (14) f = 1− 2x + x2− y − 2z − 2xz + z2;
(15) f = 1− 2x + x2 − y − 2z + 2xz + z2;
(16) f = 1− 2x + x2 − 2y + 2xy + y2 − 2z − 2xz − 2yz + z2;
(17) f = 1− 2x + x2 − 2y + 2xy + y2 − 2z + 2xz − 2yz + z2;

The proof is completed.
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First integrals of the May-Leonard asymmetric system

Objective

Construct Darboux first integrals for the May-Leonard asymmetric
system, (3), for the 17 families of Theorem 1 using invariant planes
and invariant surfaces of degree two.
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Theorem

a) If one of conditions 1-3, 11, 12, 17 of Theorem 1 holds, then
the corresponding system (3) admits at least one Darboux first
integral.
b) If one of conditions 4-10, 13-16 of Theorem 1 holds, then the
corresponding system (3) is completely integrable, that is, it
admits two independents Darboux first integrals.

Valery Romanovski Invariant surfaces and first integrals of the May-Leonard asymmetric system



Introduction
Invariant surfaces of the May-Leonard asymmetric system

First integrals of the May-Leonard asymmetric system
Conclusions

a) Condition (1):

the May-Leonard system has the form

ẋ = x(1−x−3y), ẏ = y(1−x/2−y)y , ż = z(1−α3x−β3y−z).
(23)

Using invariant planes and invariant surfaces of degree two, by the
Darboux theory we have the Darboux first integral

H̃ = xλ1yλ2(x+4y)λ1
(
x − 2y2 + 2y

)−λ2−2λ1 (−x + y2 − 2y + 1
)λ2

2 ,

λ1, λ2 not both equal to zero.

In particular, taking λ4 = 1 and = λ3 = 0 we have the Darboux
first integral

H =
x(x + 4y)

(x + 2y − 2y2)2
.
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ẋ = x(1−x−3y), ẏ = y(1−x/2−y)y , ż = z(1−α3x−β3y−z).
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Since first two equations of (23) are independent of z we cannot
construct another independent first integral H2(x , y) of (23) using
only such surfaces.

If such integral would exist then the
two-dimensional system

ẋ = x(1− x − 3y), ẏ = y(1− x/2− y)y ,

would have two independent first integrals, which is impossible.
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b) Condition (4): Using invariant planes and invariant surfaces of
degree two, by the Darboux theory we have the Darboux first
integrals

H1 =
z(2− 4x + 2x2 − 2y + yz)

(4x + y − 2z)
,

H2 =
yz

x2
.
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To check if these first integrals are independent we compute their
gradients

G1 = {4(−2 + 2x + y)(1 + x − z)z

(4x + y − 2z)2
, −2(1 + x − z)2z

(4x + y − 2z)2
,

2(4x − 8x2 + 4x3 + y − 6xy + x2y − y2 + 4xyz + y2z − yz2)

(4x + y − 2z)2
},

G2 = { − 2yz

x3
,

z

x2
,

y

x2
},

and we verified that the linear combination aG1 + bG2, where
a, b ∈ R, is equal to 0 if and only if a = b = 0.

Therefore the Darboux first integrals H1 and H2 are independents.
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Conclusions

Using invariant surfaces of degree two and invariant planes:

6 families of the May-Leonard asymmetric system admitting
at least one Darboux first integral are found;

11 families of the May-Leonard asymmetric system admitting
two independents Darboux first integral are found;

we could not find invariant surfaces passing through the
origin, that is, polynomials (9) with h000 = 0;
These case is computationally more difficult since the system
has 3 invariant planes x = 0, y = 0, z = 0 passing through
the origin and this yields a complicate structure of the
corresponding ideal I .
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